Preservation of Lipids With Malic Acid

S. EDMUND BERGER, CASIMIR V. KROLEWSKI and LESLIE C. WIZEMANN, Specialty Chemicals Division, Allied Chemical Corporation, Buffalo, New York 14210

Abstract

This paper deals with an evaluation of malic acid in a number of different lipids of animal and vegetable origin under comparable conditions. An Active Oxygen Method was used, with citric acid as the standard of comparison. In most cases, the performance of the acids was determined in the presence and absence of added iron salts and antioxidants butylated hydroxyanisole and butylated hydroxytoluene. Mathematical evaluation of the data shows malic acid to be at least as effective as citric acid in most cases. In very few instances, a reversal of performance was observed depending on experimental conditions used. In a few experiments, malic acid was also tested against phosphoric acid and found to be equal to or better than the latter. Phosphoric acid caused darkening of the oils at the test temperature used.

Introduction

The retarding effect of malic acid on oxidative deterioration of lipids is well known both in non-food uses (1-6) and in the stabilization of edible oils and fats (7-13). The published literature, however, gives a somewhat inconsistent picture of the performance of this acid. For example, Dutton et al. (9), in a study of soybean oil by the active oxygen method (97.8 C) found citric acid to be markedly more effective than malic acid in preventing peroxide build-up. On the other hand Olcott and Mattill (8), in an investigation of hydrogenated cottonseed oil by the oxygen absorption method (75 C), found these two acids to be nearly equally effective. More recent data published by Japanese workers (12) on the protective effect of malic acid on olive oil containing added copper oleate, at 50 C, show malic acid to be as good as or better than citric acid.

Citric acid is widely used by the lipid industry as an antioxidant synergist and trace metal deactivator. Hence, a comparison with this acid provides a convenient measure of the value of a substance as a lipid preserver. Based on the above-cited tests, the relative performance of malic acid ranges from fair to excellent. The inconsistent results in the literature may be due to the use of slightly different experimental conditions. To provide a clear comparison of malic acid and citric acid, it was deemed of interest to study their relative performance under strictly comparable test conditions; a few tests against phos-

TABLE I							
Lipids	Used	and	Their	Characteristics			

Lipids	Initial peroxide value,	AOM value.	Metal content, ppm ^b		
	meq/kg oil	hrª	Fe	Cu	Ni
Soybean oil	11	5.5	0.2	0.03	
Hydrogenated soybean oil	0	63	0.5	0.05	0.9
Cottonseed oil	42	3.1	0.8	0.03	
Prime steam lard	0	3.4	0.2	0.03	
Top white tallow	4	2.4	1.2	0.04	
Fancy bleachable tallow	0	2.2	1.2	0.05	
Yellow grease	0	5.3	5.2	0.08	

^a Time required for sample to attain an AOM peroxide value of 100 mek/kg of oil. ^b By atomic absorption spectrophotometry. phoric acid are also included for comparison. Such experiments, on a number of different lipids, are the subject of this paper.

Experimental Procedure

Materials

Table I shows the lipids used in this study and some of their characteristics. These materials were obtained from commercial sources and contained no added antioxidants or metal deactivators. In some cases, they were carefully processed in the laboratory to ensure freedom from these additives.

Anhydrous citric acid (Chas. Pfizer & Co.) and Pomalus food grade malic acid (Allied Chemical Corp.) were used in all tests. Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) were food grade materials supplied by UOP Chemical Division and Eastman Chemical Products, Inc., respectively. Phosphoric acid (85–87%) and ferric chloride were reagent grade materials supplied by Baker & Adamson. Ferrous distearate was supplied by Witco Chemical Co.

Method

Oxidative stability of the lipids was determined at 99-100 C by the Active Oxygen Method (AOM) (14) with iodometric titration of the peroxides (14,15). A value of 100 meq of peroxide per kilogram of lipid was taken as the rancidity point in all cases. Time corresponding to this value was determined graphically, from peroxide value-aeration time plots. The apparatus used was built essentially as described in Reference 14 except that additional ballast volume was included in the air distribution system between flowmeters and aeration tubes to smooth the motion of the flow-indicating ball. A constant temperature silicone bath was used. Most experiments were run in duplicate; however, only the average result is tabulated. The additives were incorporated into the oils at room temperature either as solids or in the form of aqueous solutions. In experiments involving the higher levels of acid addition, the solubility limits of the acids may have been exceeded initially; however, as aeration at the test temperature proceeded, nearly total solubilization usually occurred.

Precision and Significance

The coefficient of variation (standard deviation expressed as a per cent of the AOM value) was determined from the data tabulated below and from data obtained in preliminary experiments not reported here. The value found for this coefficient is 6%. The coefficient of variation given in AOCS Tentative Method Cd 12–57, which is very similar to the method used by us, is 13.4%. The latter value refers to interlaboratory precision most likely based on round-robin tests. The better precision of our data is undoubtedly due to the fact that all tests were performed by the same personnel; it reflects the precision of the method and excludes betweenlaboratory variance.

For purposes of interpreting the tabulated data presented here which show AOM values in hours, not in percentages, the repeatability value can be used. In our case, this value is 17%~(38% for the AOCS method). This means that two measurements differing by 17% are different at the 5% significance level (a = 0.05).

Dutton et al. (9) report statistical information on the precision of their AOM data in somewhat ambiguous terms ("The standard deviations of means for these control samples ... are approximately $\pm 15\%$ ") making an accurate comparison with our findings difficult. However, from all indications, our measure of variation reflects greater precision than that reported by these workers.

Analysis of the results for significance is based on a statistical t-test (16).

Results and Discussion

Performance of Malic Acid

Experimental results are summarized in Table II. Examination of these results from the standpoint of the relative performance of malic acid shows the following.

Soybean Oil (Tests 1-5). In the presence of added iron, malic acid was more effective than citric acid; in the absence of added iron, neither acid was effective.

Hydrogenated Soybean Oil (Tests 6-20). With increasing acid concentration, in the absence of other additives, malic acid showed greater effectiveness than citric acid (Expt. 7,8,10-13). In all other experiments, the two acids performed equally well. Malic acid also compared well against phosphoric acid. However, at the end of aeration, the samples containing phosphoric acid were markedly darker than those containing malic or citric acid which were very light in color.

Cottonseed Oil (Tests 21-25). The two acids showed equal effectiveness in all tests.

Prime Steam Lard (Tests 26-36). In the absence of additives, malic acid was more effective than either citric or phosphoric acid. In all other experiments,

Oil Test No. Matic acid Citric acid Phosphoric acid Lon (111) as Acid BHA BHT Matic the bit of acid Statistical acid S					Ad	ditives, ppm					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Oil	Test	Malia	Citria	Phosphoria	Iron (1	(II) as			AOM value	Statistical significance of difference
Soyhean 1 100 100 5 100 6.5 NS* Hydrogenated soyhean 5 100 5 100 2.3 $a^{b} < 0.001$ Hydrogenated soyhean 5 100 2.3 NS NS 10 250 250 100 100 87 NS 11 250 250 100 1		NO.	acid	acid	acid	Chloride	Stearate	BHA	BHT	hr	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Soybean	1								5.5	
4 100 5 100 2.4 $a^{b} < 0.001$ Hydrogenated soybean 6 100 2.5 100 2.4 $a^{b} < 0.001$ Hydrogenated soybean 6 100 100 100 100 2.4 $a^{b} < 0.001$ Hydrogenated soybean 6 100 100 100 100 87 NS 11 500 550 100 100 100 87 NS 11 500 550 100 100 100 87 NS 12 100 100 100 100 100 100 87 13 100 100 0.3 260 250 94 NS 20 100 100 0.3 260 250 94 NS 21 100 100 0.3 260 250 94 NS 21 100 100 0.3 260 250 94 NS 22 100 100 100 100 100 100 100		$\frac{2}{3}$	100	100	•••••	••••		100		6.0 5.9	NS*
5 100 5 100 2.2 soybean 6 100 100 2.2 N8 soybean 6 100 100 100 100 100 100 100 N8 10 256 256 100		4	100			5		100		4.4	a ^b <0.001
		5	••	100		5	••••	100		2.2]	
soybean 3 100 <t< td=""><td>Hydrogenated</td><td>6</td><td></td><td></td><td>···.ť</td><td></td><td></td><td></td><td></td><td>63</td><td></td></t<>	Hydrogenated	6			···.ť					63	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	soybean	7	100	100		••••		•••••	•••••	87	NS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9			100			******		86	110
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	250	250	•••••			•••••			NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$11 \\ 12$	500	200						105	a = 0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		13		500				100	100	82	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	100	•••••				100	100	86 96)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	100	100				100	100	96	NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		17	•••••		100			100	100	102	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18 19	100	•••••	•••••	0.3		250	250	21 93 1	NS
$\begin{array}{c} \text{Cottonseed} & \begin{array}{c} 21 \\ 23 \\ 23 \\ 24 \\ 100 \\ 25 \\ 25 \\ 100 \\ 25 \\ 100 \\ 25 \\ 100 \\ 25 \\ 100 \\ 100 \\ 25 \\ 100 \\ $		20		100		0.3		250	250	94	110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cottonseed	21								3 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Contonseeu	$\frac{1}{22}$	100					100		3.1]	NS
23 100 100 35 100 2.5 100 Prime steam lard 26 100 100 100 2.5 3.5 100 100 100 100 771 NS 33 100 100 0.3 250 250 31 NS 35 100 0.3 250 250 62 NS 41 500 500 5 100 100 NS 41 500 500 5 100 104 NS 42 500 500 5 100 100 <td></td> <td>23</td> <td>100</td> <td>100</td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td>3.0</td> <td>NO</td>		23	100	100				100		3.0	NO
Prime steam lard 26 27 28 100 100 3.4 5.5 29 3.4 5.5 29 3.4 5.5 $a = 0.001$ 29 100 3.3 $a = 0.001$ 31 100 100 3.3 $a = 0.001$ 31 100 100 100 100 771 NS 34 0.03 250 250 63 NS Top white tallow 37		24	100	100		• • • • •	5 5	100	•••••	2.0	NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
and $\frac{5}{28}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{3}{3}.5$ $a = 0.001$ $\frac{30}{30}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{3}{1}.5$ $a = 0.001$ $\frac{31}{32}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{72}$ NS $\frac{31}{34}$ $\frac{100}{100}$ $\frac{0.3}{0.3}$ $\frac{250}{250}$ $\frac{250}{525}$ $\frac{21}{50}$ NS Top white $\frac{37}{35}$ $\frac{100}{100}$ $\frac{5}{5}$ $\frac{100}{100}$ $\frac{24}{10}$ NS $\frac{41}{400}$ $\frac{500}{500}$ $\frac{5}{5}$ $\frac{100}{100}$ $\frac{2.2}{100}$ NS $\frac{44}{43}$ $\frac{500}{500}$ $\frac{5}{5}$ $\frac{100}{100}$ $\frac{108}{108}$ NS $\frac{44}{43}$ $\frac{100}{500}$ $\frac{500}{500}$ $\frac{500}{5}$ $\frac{100}{100}$ $\frac{100}{104}$ NS $\frac{100}{43}$ $\frac{100}{100}$ $\frac{500}{100}$ $\frac{500}{100}$ $\frac{500}{100}$ $\frac{500}{100}$ $\frac{100}{100}$ $\frac{100}{37}$ $a < 0.001$ $\frac{100}{50}$ $\frac{500}{50}$ $\frac{50}{5}$ $\frac{1000}{37}$ $$	Prime steam	$\frac{26}{27}$	100			••••			•••••	3.4 5.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	laru	$\tilde{28}$		100						3.5	$\alpha = 0.001$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		29		•••••	100			100	100	3.3]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	100		•••••	••••		100	100	56 77]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		32		100				100	100	71	NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		33			100	0.9		100	100	72	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		54 35	100			0.3		250	250	65]	NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		36		100		0.3		250	250	62 J	
tallow 38 100	Ton white	37								2.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tallow	38	100			5				6.0 }	NS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		39	500	100		5		100		6.0	NG
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	500	500		0 5		100		105	NS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\overline{42}$	500				5	100		109]	NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		43	• •••••	500			5	100	·····	104 J	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fancy	44								2.2	
tailow 40 100 50° 40° $a < 0.001$ 48 300 50° 8.3 $a < 0.001$ 48 100 100° 100° 8.3 $a < 0.001$ 50 100 100° 28 $a < 0.001$ 51 500 100° 377 $a = 0.02$ 53 500 500 51 $a = 0.02$ 54 500 51 $a = 0.02$ 55 $a = 0.02$ $a = 0.01$ 54	bleachable	45	100	100			••••		•••••	3.5	NS
$4\hat{s}$ 600 300 600 $6\hat{s}\hat{s}\hat{s}$ $6\hat{s}\hat{s}\hat{s}\hat{s}\hat{s}\hat{s}\hat{s}\hat{s}\hat{s}\hat{s}$	tallow	40	300	100				50°		18	a < 0.001
49 100 100° 17 $a < 0.001$ 50 100° 100° 28 51 500 100° 28 52 500 100° 37 53 500 5 100° 37 54 500 5 100° 37 54 500 5 100° 37 $a = 0.01$ 57 500 5 100° 37 $a = 0.01$ 57 100 51 51 $a = 0.01$ 59 500 100 116 $a = 0.01$ 61 100 100 116 $a = 0.01$ 62 500 100 100 116 $a = 0.01$		48		300				50°		8 .3	u < 0.001
50 100 100 100° 25 $a = 0.02$ 52 500 $$ 100° 37 $a = 0.02$ 52 500 $$ 5 100° 37 $a = 0.03$ 54 $$ 500 $$ 5 100° 37 $a = 0.005$ Yellow grease 55 $$ $$ $$ $$ $$ 5.3 $a = 0.01$ 56 100 $$ $$ $$ $$ $$ 37 $a = 0.01$ 56 100 $$ $$ $$ $$ $$ 37 $a = 0.01$ 56 100 $$ $$ $$ $$ $$ 212 $a = 0.01$ 59 $$ 100 $$ $$ $$ 212 $a = 0.01$ 61 $$ 100 $$ 100 $$ 100 $$ $a = 0.01$ 62 500 $$ $$ 100		49	100	100				100°			a < 0.001
52 500 100° 37 $a = 0.005$ 53 500 500 5 100° 37 $a = 0.005$ Yellow grease 55 500 500 5 100° 37 $a = 0.005$ Yellow grease 55 500 500 500 500 500 37 $a = 0.01$ 57 500 500 500 500 511 721 $8 = 0.01$ 59 500 500 500 500 100 116 $a = 0.01$ 61 100 100 100 100 116 850 <		51	500	100		••••		100*		52	a = 0.02
$53 \\ 54 \\ 54 \\ 55 \\ 55 \\ 56 \\ 56 \\ 57 \\ 57 \\ 59 \\ 60 \\ 61 \\ 62 \\ 59 \\ 62 \\ 500 \\ $		52		500		<u>_</u>		100°	******	37	
Yellow grease 55		53 54	500	500		5		100°	•••••	25	$a \equiv 0.005$
1 ellow grease 55 $$ $$ $$ $$ $$ $$ 55 $$ 51 $a = 0.01$ 57 $$ 100 $$ $$ $$ $$ 72 8 $a = 0.01$ 58 500 $$ $$ $$ $$ 211 NS 60 100 $$ $$ $$ 100 $$ 212 $a = 0.01$ 61 $$ 100 $$ 100 $$ 236 NS 62 500 $$ 100 $$ 100 $$ 236 NS	X 7 11					-				., j	
$ \begin{bmatrix} 57 & \dots & 100 & \dots & \dots & \dots & \dots & 102 \\ 58 & 500 & \dots & \dots & \dots & \dots & \dots & \dots & 211 \\ 59 & \dots & 500 & \dots & \dots & \dots & \dots & \dots & 212 \\ 60 & 100 & \dots & \dots & \dots & 100 & \dots & 172 \\ 61 & \dots & 100 & \dots & \dots & 100 & \dots & 116 \\ 62 & 500 & \dots & \dots & \dots & 100 & \dots & 236 \\ 62 & 500 & \dots & \dots & \dots & 100 & \dots & 236 \\ \end{bmatrix} $	Yellow grease	55 56	100		•••••					5.3 51	a = 0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		57		100						72	u 0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		58	500	500						211	NS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		60	100	200	******			100		172	$a = 0.01^{-1}$
$62 500 \dots 100 \dots 100 \dots 236$ NS		61	222	100				100		116	a = 0.01
		62 63	500	500				100	•••••		NS

^b Probability that two numbers are different when they are not (type-1 error). In this paper, significant differences are indicated by $\alpha \leq 0.05$. ^c In propylene glycol solution.

the acids showed equal effectiveness. The effect on color of the aerated samples was the same as for hydrogenated soybean oil; phosphoric acid gave darker oils than did malic or citric acid, which showed practically no effect on color.

Top White Tallow (Tests 37-43). The two acids showed equal effectiveness in all tests.

Fancy Bleachable Tallow (Tests 44–54). The two acids showed equal effectiveness in the absence of other additives (Tests 45,46). At the lower level of BHA, malic acid was more effective than citric acid (Tests 47, 48); at the higher level of BHA (Tests 49-54), relative performance of the two acids varied.

Yellow Grease (Tests 55-63). At the higher level of acid (500 ppm), malic acid and citric acid showed equal effectiveness regardless of the presence of BHA (Tests 58,59;62,63). At the low level of acid (100 ppm), malic acid was more effective in the presence of BHA, whereas citric acid showed greater effectiveness in the absence of BHA.

The above results show that, in the vegetable oils, lard and top white tallow, malic acid was equal to or slightly better than citric acid; in fancy bleachable tallow and yellow grease, the relative performance of the two acids varied, with malic acid being more effective in some cases and citric acid in others.

The greater effectiveness of malic acid observed in many of the above tests may be due to the lower molecular weight of this acid (134 vs. 192 for citric acid). This hypothesis is based on the assumption of a 1:1 molecular metal-acid chelate. For comparable chelate stability, the lower molecular weight acid would then be expected to have greater metal binding efficiency.

The overall conclusion based on these laboratory tests is that malic acid is potentially a very valuable lipid stabilizer. Since commercial processing conditions vary markedly with respect to temperature, lipid history, trace metal contamination, etc., and since the two acids have different physical and chemical properties, their relative performance under practical conditions may differ from that observed in the laboratory. For example, the lower melting point of malie acid (129 C vs. 153 C for citric acid) may prove beneficial in promoting dispersion and rate of solution of the acid in hot oil. The performance of malic acid at oil processing temperatures should, to a degree. depend also on the effectiveness of its thermal degradation products which at this time is not well known. Evaluations of malic acid on a commercial scale should resolve some of these uncertainties.

ACKNOWLEDGMENTS

W. J. Hill and E. K. Roop performed the statistical tests; R. G. White and his staff performed the analyses.

REFERENCES

- REFERENCES
 1. Rogers, T. H. (E. I. DuPont de Nemours & Co.), U.S. Patent 1,805,458 (1931).
 2. McBurney, J. D., and E. H. Nollan (E. I. DuPont de Nemours & Co.), U.S. Patent 1,836,265 (1931).
 3. Emhardt, J. C. (E. I. DuPont de Nemours & Co.), U.S. Patent 1,857,274 (1932).
 4. Hirsch, R. B. (The Federal Process Company), U.S. Patent 2,805,953 (1957).
 5. Brown, K. L. (Union Carbide Corporation), U.S. Patent 3,087,900 (1963).
 6. McAvoy, B. C. (The Glidden Co.), U.S. Patent 3,346,525 (1967).
 7. Greenbank, G. R., and G. E. Holm, Ind. Eng. Chem. 26, 243 (1934).
 8. Olcott, H. S., and Mattill, H. A., J. Amer. Chem. Soc. 58, 2204 (1936).
 9. Dutton, H. J., A. W. Schwab, H. A. Moser and J. C. Cowan, JAOCS 25, 385 (1948).
 11. Spetsig, L. O., Arkiv Kemi 15, 23 (1959); C.A. 54, 17918c (1960).
 12. Bito, T., and K. Aoshima, Yukagaku (J. Jap. Oil Chem. Soc.) 16, 423 (1965); C.A. 67, 91964 (1967).
 13. Koch, K. H., British Patent 1,070,083 (1967).
 14. Riemenschneider, R. W., J. Turer and R. M. Speck, Oil and Soap 12, 169 (1943).
 15. Wheeler, D. H., Oil and Soap 9, 89 (1932).
 16. Dixon, D. J., and F. J. Massey. "Introduction to Statistical Analysis," McGraw-Hill Book Co., New York, 1957. [Received October 16, 1969]